Tag: Space

Russia Implies Americans Sabotaged International Space Station

Russian investigators looking into the origin of a hole that caused an oxygen leak on the International Space Station have said it was caused deliberately, the space agency chief said.

A first commission had delivered its report, Dmitry Rogozin, the head of the Russian space agency Roskosmos, said in televised remarks late Monday.

“It concluded that a manufacturing defect had been ruled out which is important to establish the truth.”

Rogozin said the commission’s main line of inquiry was that the hole had been drilled deliberately, a position that has been voiced in the past.

“Where it was made will be established by a second commission, which is at work now,” he said.

The small hole in the wall of a Russian-made Soyuz space capsule docked onto the ISS was located in August and quickly sealed up.

Officials have suggested a number of possible reasons for the appearance of the hole.

A top government official has denied a Russian media report that the investigation looked at the possibility that US astronauts had drilled the hole in order to get a sick colleague sent back to Earth.

The current ISS commander, US astronaut Drew Feustel, called the suggestion that the crew was somehow involved “embarrassing”.

Rogozin — who previously oversaw the Russian space industry as deputy prime minister — was appointed head of Roskosmos last May, in a move analysts said would spell trouble for the embattled sector.

The official, who was placed under US sanctions over the Ukraine crisis in 2014, admitted it had become difficult to work with NASA.

“Problems with NASA have certainly appeared but not through the fault of NASA,” he said, blaming unnamed American officials for telling the US space agency what to do.

He also claimed that SpaceX founder Elon Musk sought to squeeze Russia out of the space launch services market and complained about the US military drone X-37.

“Americans have this thing, the X-37,” Rogozin said. “We don’t understand its purposes. Rather, we do understand, but we have not received an official explanation.

“Essentially, this thing can be used as a weapons carrier.”

What this has to do with the investigation into a hole in the ISS is unknown, and the question remains: Could anyone take a drill to the ISS, a small contained environment with less internal area than many houses, with external cameras, and go unnoticed?

NASA representatives assure us that space walks are all carefully monitored in real time to assure astronaut safety.

The Sentinel believes that if the hole was drilled deliberately, the mostly likely explanation is that it must have been done before the capsule left  Earth. That means Russia.

Advertisements

Defending The Earth, A New U.S. Space Force?

U.S. President Donald Trump’s desire to create a Space Force might sound a little out of this world, but the idea of making military use of space is not new.

“We already, in fact, have a kind of Space Force,” says Ilya Somin, a professor of law at George Mason University. “We have military satellites that already exist. They’ve existed for a long time. It’s just that they’re controlled by the Air Force and sometimes by the Navy. So if Trump succeeds in persuading Congress to create a Space Force, all that will happen, at least initially, is that the sort of thing that was previously done by the Air Force will now be done by the Space Force.”

The U.S. military is currently composed of five armed services – the Army, Navy, Air Force, Marine Corps and Coast Guard. President Trump wants the Space Force to become a sixth military service branch focused on space warfare.

Constitutional scholars are debating how such a force would come into existence. Some question whether the U.S. Constitution, the nation’s founding governing document, allows for the establishment of a Space Force.

The Constitution grants Congress the power to “raise and support Armies” and also to “provide and maintain a Navy.”

Originalists, scholars who believe the Constitution should be interpreted as it was understood at the time it was enacted back in 1787, might argue that even the Air Force, which became a separate branch of the U.S. Armed Forces in 1947, should be considered unconstitutional.

Yet originalists could defend a Space Force if it were to be part of the Navy or Army, as the Air Force once was.

“A Space Force, like an Air Force, under modern conditions, is essential to conducting ground operations. It’s just another weapon for ground operations and sometimes naval operations,” Somin says. “The Constitution nowhere limits the kinds of weapons the Army or Navy is allowed to have. So if they’re allowed to have bullets that fly through the air, they can have planes that fly through the air and even spacecraft that fly through space.”

Originalists could also make a case for a completely separate Space Force organizationally because the Constitution gives Congress powers to do what is “necessary and proper” to enable lawmakers to execute their powers.

Agreeing that a Space Force is constitutional might come easily to “living constitutionalists,” scholars who believe that the meaning of the Constitution can change over time to account for modern conditions.

There is, however, one kind of Space Force that both originalists and living constitutionalists might have a problem with – a deep Space Force along the lines of Star Trek’s science fictional Starfleet, which conducts interstellar warfare, exploration and colonization.

“If you’re talking about the Starship Enterprise and it’s light years away from Earth and it’s fighting the Klingons or something in space, that has little or no connection to ground or naval warfare,” says Somin, adding, “I think there is a genuinely strong argument that that kind of deep Space Force would not be permissible under the original meaning of the Constitution.”

But what if aliens in a galaxy far, far away, plan to attack Earth?

“Any such thing, [our ability to use technology for deep space interstellar flight], if it ever happens at all, is many decades away probably, so we have plenty of time to discuss it and debate it, and if we decide this is something we really need, we can do a constitutional amendment,” Somin says. “It’s not like the Klingons or the Romulans are about to attack us tomorrow and we have to immediately authorize Starfleet to defeat them.”

Failed Star Presents Unique Opportunities

A rogue, planet-size object 20 light-years away from Earth has stunned astronomers with its incredibly powerful magnetic field.

The scientists found that the object’s magnetic field is more than 200 times stronger than Jupiter’s, which, in turn, is between 16 and 54 times stronger than Earth’s, according to NASA. How the object, which scientists call SIMP J01365663+0933473, can maintain a magnetic field so strong, as well as generate spectacular auroras, is still unclear.

“This particular object is exciting because studying its magnetic dynamo mechanisms can give us new insights on how the same type of mechanisms can operate in extrasolar planets — planets beyond our solar system,” lead study author Melodie Kao, an astrophysicist at Arizona State University, said in a statement from the National Radio Astronomy Observatory published Aug. 2.

It’s not just the magnetic mechanism that’s leaving scientists with questions right now — there are plenty of other mysteries about the object, which scientists first discovered in 2016.

The object is what scientists call a brown dwarf. Nicknamed “failed stars,” brown dwarfs are larger than planets, but not quite large enough to fuse hydrogen, the way stars do. The boundary line is still debated, but scientists tend to draw it at about 13 times the mass of Jupiter.

Originally, scientists thought SIMP J01365663+0933473 was a gigantic, old brown dwarf. But further study showed that it is instead relatively young, at 200 million years old, and is only 12.7 times the mass of Jupiter. That research also showed that the planet is on its own, not orbiting a star.

“This object is right at the boundary between a planet and a brown dwarf, or ‘failed star,’ and is giving us some surprises that can potentially help us understand magnetic processes on both stars and planets,” Kao said in the statement. “We think these mechanisms can work not only in brown dwarfs, but also in both gas giant and terrestrial planets.”
The team is particularly excited by the new research because it relies in part on radio observations of the object’s auroras — which means that radio telescopes may be able to identify new planets by their auroras.

The new research was described in an article published July 31 in the Astrophysical Journal.
Copyright © 2018
All Rights Reserved.

NASA: Six Facts About Recovering The Mars Opportunity Rover

NASA’s Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is “decaying” — meaning more dust is falling out of the atmosphere than is being raised back into it — skies might soon clear enough for the solar-powered rover to recharge and attempt to “phone home.”

No one will know how the rover is doing until it speaks. But the team notes there’s reason to be optimistic: They’ve performed several studies on the state of its batteries before the storm, and temperatures at its location. Because the batteries were in relatively good health before the storm, there’s not likely to be too much degradation. And because dust storms tend to warm the environment — and the 2018 storm happened as Opportunity’s location on Mars entered summer — the rover should have stayed warm enough to survive.

What will engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, be looking for — and what will those signs mean for recovery efforts?

A tau below 2

Dust storms on Mars block sunlight from reaching the surface, raising the level of a measurement called “tau.” The higher the tau, the less sunlight is available; the last tau measured by Opportunity was 10.8 on June 10. To compare, an average tau for its location on Mars is usually 0.5.

JPL engineers predict that Opportunity will need a tau of less than 2.0 before the solar-powered rover will be able to recharge its batteries. A wide-angle camera on NASA’s Mars Reconnaissance Orbiter will watch for surface features to become visible as the skies clear. That will help scientists estimate the tau.

Updates on the dust storm and tau can be found here.

Two Ways to Listen for Opportunity

Several times a week, engineers use NASA’s Deep Space Network, which communicates between planetary probes and Earth, to attempt to talk with Opportunity. The massive DSN antennas ping the rover during scheduled “wake-up” times, and then search for signals sent from Opportunity in response.

In addition, JPL’s radio science group uses special equipment on DSN antennas that can detect a wider range of frequencies. Each day, they record any radio signal from Mars over most of the rover’s daylight hours, then search the recordings for Opportunity’s “voice.”

Rover faults out

When Opportunity experiences a problem, it can go into so-called “fault modes” where it automatically takes action to maintain its health. Engineers are preparing for three key fault modes if they do hear back from Opportunity.

  • Low-power fault: engineers assume the rover went into low-power fault shortly after it stopped communicating on June 10. This mode causes the rover to hibernate, assuming that it will wake up at a time when there’s more sunlight to let it recharge.
  • Clock fault: critical to operating while in hibernation is the rover’s onboard clock. If the rover doesn’t know what time it is, it doesn’t know when it should be attempting to communicate. The rover can use environmental clues, like an increase in sunlight, to make assumptions about the time.
  • Uploss fault: when the rover hasn’t heard from Earth in a long time, it can go into “uploss” fault — a warning that its communication equipment may not be functioning. When it experiences this, it begins to check the equipment and tries different ways to communicate with Earth.

What happens if they hear back?

After the first time engineers hear from Opportunity, there could be a lag of several weeks before a second time. It’s like a patient coming out of a coma: It takes time to fully recover. It may take several communication sessions before engineers have enough information to take action.

The first thing to do is learn more about the state of the rover. Opportunity’s team will ask for a history of the rover’s battery and solar cells and take its temperature. If the clock lost track of time, it will be reset. The rover would take pictures of itself to see whether dust might be caked on sensitive parts, and test actuators to see if dust slipped inside, affecting its joints.

Once they’ve gathered all this data, the team would take a poll about whether they’re ready to attempt a full recovery.

Not out of the woods

Even if engineers hear back from Opportunity, there’s a real possibility the rover won’t be the same.

The rover’s batteries could have discharged so much power — and stayed inactive so long — that their capacity is reduced. If those batteries can’t hold as much charge, it could affect the rover’s continued operations. It could also mean that energy-draining behavior, like running its heaters during winter, could cause the batteries to brown out.

Dust isn’t usually as much of a problem. Previous storms plastered dust on the camera lenses, but most of that was shed off over time. Any remaining dust can be calibrated out.

Send Opportunity a postcard

Do you miss Opportunity as much as the rover’s team? You can write a message sharing your thoughts here.

Read more about Opportunity at:

https://mars.nasa.gov/mer/highlights/

 

Brighter Future For Us All: High-Fidelity Images of Sun’s Atmosphere Tell The Tale

A Southwest Research Institute-led team discovered never-before-detected, fine-grained structures in the Sun’s outer atmosphere, or corona. The team imaged this critical region in detail using sophisticated software techniques and longer exposures from the COR-2 camera onboard NASA’s Solar and Terrestrial Relations Observatory-A (STEREO-A).

The Sun’s outer corona is the source of the solar wind, the stream of charged particles that flow outward from the Sun in all directions. Measured near Earth, the magnetic fields embedded within the solar wind are intertwined and complex.

“Previous images showed the outer corona as a smooth structure, but in deep space, the solar wind is turbulent and gusty,” said SwRI’s Dr. Craig DeForest, a solar physicist and lead author of “The Highly Structured Outer Corona,” an article published by Astrophysical Journal July 18, 2018.

“Using new techniques to improve image fidelity, we realized that the corona is not smooth, but structured and dynamic. Every structure that we thought we understood turns out to be made of smaller ones and to be more dynamic than we thought.”

To understand the corona, DeForest and his colleagues started with extended exposures of STEREO-A’s coronagraph images – pictures of the Sun’s atmosphere produced by a special telescope that blocks out light from the bright solar disk.

The coronagraph is sensitive enough to image the corona in great detail, but in practice its measurements are polluted by noise both from the space environment and the instrument itself. The team’s key innovation was identifying and separating out that noise, boosting the signal-to-noise ratio and revealing the outer corona in unprecedented detail.

“We couldn’t tinker with the instrument itself, so we took a software approach, squeezing out the highest quality data possible by improving the data’s signal-to-noise ratio,” DeForest said. “We developed new filtering algorithms, designed and tested to delineate the true corona from the noisy measurements.”

The algorithms filtered out light and adjusted brightness. But the most challenging obstacle is inherent: blur due to the motion of the solar wind. “This technique adjusted images not just in space, not just in time, but in a moving coordinate system,” DeForest said.

“That allowed us to correct motion blur not just by the speed of the wind, but by how rapidly features changed in the wind.”

With the resulting unprecedented view of the corona, the team made several groundbreaking discoveries. For example, coronal streamers – magnetic loops that can erupt into coronal mass ejections that send blobs of solar material into space – are far more structured than previously thought.

“What we found is that there is no such thing as a single streamer,” DeForest said. “The streamers themselves are composed of myriad fine strands that, together, average to produce a brighter feature.”

Then there’s the theoretical Alfven surface – a proposed surface, or sheet-like layer where the gradually accelerating solar wind reaches a critical speed. But that’s not what DeForest’s team observed.

“What we found is that there isn’t a clean Alfven surface,” DeForest said. “There’s a wide ‘no-man’s land’ or `Alfven zone’ where the solar wind gradually disconnects from the Sun, rather than a single clear boundary.”

And the close look at the coronal structure also raised new questions. Techniques used to estimate the speed of the solar wind revealed that the wind suddenly changes its character at a distance of around 10 solar radii, well within the conventional boundary of the corona itself.

“Some interesting physics is happening around there,” DeForest said. “We don’t know what it is yet, but we do know that it is going to be interesting.”

These first observations will provide key insight for NASA’s upcoming Parker Solar Probe, the first-ever mission to gather measurements from within the outer solar corona.